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We proposed a layered architecture incorporating safety-informed reward design for MARL Curriculum learning penalty for entering potential conflict zone: “

and CBVF-based safety filters during training via curriculum learning, enabling proactive 1. First train without any safety filter or reward penalty Coti= Y max(O, e — dist(s0)) x max {0, [26) 4] [v%jjﬁ] !

conflict resolution by avoiding potential conflict zones and improved coordination efficiency. 2. Activate safety filter A R e—

3. Gradually increase safety radius and conflict radius Combined Reward:
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Conflicting Constraints Highlighted Results

Main challenge in composing safe sets in multi-agent interaction: 1. Air Taxi Operation without Centralized Traffic Control [ . —_— }

Leaky Corners arising from ConﬂiCting Constraints Potential Conflict Zone: 8 vehicles departing from various locations in Bay Area, merging to land in San Francisco Position of vehicles Active safety filtering
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Layered Safety 2. Hardware experiments with quadrotors | posiionofmbotl @ il staes
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- - - Three drones going through the same air corridor to get to their landing spots. position of robot 3 1/ waypoints
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Based on local observations, GNN-based MARL Policy learns navigation while incentivized to avoid potential conflict zones. Safety-blind MARL Safety-informed MARL
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3. An extensive empirical study of different safety-informing methods in MARL

Our method generalizes better than prior works in terms of number of agents. (N =number of agents, M =number of waypoints)
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collision risk Safety-informed training vs no safety filter or safety-informed reward Comparison to other model-based and model-free baselines:
(Airtaxi scenarios) (Crazyflie scenarios)
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